7480 measured reflections

 $R_{\rm int} = 0.031$

2602 independent reflections

1966 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Piperidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

Zhenhuan Li,* Bowen Cheng and Su Kunmei

College of Materials and Chemical Engineering, and Tianjin Key Laboratory of Fiber Modification & Functional Fiber, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

Correspondence e-mail: zhenhuanli1975@yahoo.com.cn

Received 7 March 2008; accepted 12 May 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.091; data-to-parameter ratio = 12.4.

The asymmetric unit of the title compound, $C_5H_{12}N^+$.- $C_7H_5O_6S^-$. H_2O , contains a piperidinium cation, one 3-carboxy-4-hydroxybenzenesulfonate anion and one water molecule. Intermolecular $O-H\cdots O$, $O-H\cdots S$ and $N-H\cdots O$ hydrogen bonds generate a three-dimensional hydrogenbonded framework.

Related literature

For related literature, see: Smith et al. (2007).

Experimental

Crystal data $C_5H_{12}N^+ \cdot C_7H_5O_6S^- \cdot H_2O$ $M_r = 321.34$ Monoclinic, P_{2_1}/n a = 6.8895 (14) Å b = 13.202 (3) Å c = 16.255 (3) Å $\beta = 93.739$ (3)°

 $V = 1475.3 (5) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.25 \text{ mm}^{-1}\) T = 294 (2) K 0.24 \times 0.20 \times 0.16 \text{ mm}\)

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.942, T_{\rm max} = 0.961$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$vR(F^2) = 0.091$	independent and constrained
S = 1.04	refinement
602 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
09 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
restraints	

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7B\cdots O1$	0.855 (9)	1.933 (10)	2.786 (2)	176 (2)
$O7 - H7A \cdots O2^{i}$	0.859 (9)	1.912 (10)	2.770 (2)	177 (2)
$N1 - H1B \cdots O5$	0.88 (3)	2.55 (2)	2.983 (3)	110.6 (18)
$N1-H1B\cdots O7^{ii}$	0.88 (3)	2.16 (3)	2.996 (3)	157 (2)
$N1-H1A\cdots O2^{iii}$	0.92 (3)	1.90 (3)	2.807 (3)	170 (2)
O6−H6···O5	0.84 (3)	1.82 (3)	2.597 (2)	153 (3)
O4−H4···O7 ⁱⁱ	0.85 (3)	1.75 (3)	2.601 (2)	179 (3)

Symmetry codes: (i) x + 1, y, z; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) -x, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for the financial support of Tianjin Polytechnic University (029623 and 029817) and the Natural Science Foundation of Tianjin Education Committee (20070607).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2042).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645–3652. supplementary materials

Acta Cryst. (2008). E64, o1085 [doi:10.1107/S1600536808014256]

Piperidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

Z. Li, B. Cheng and S. Kunmei

Comment

5-Sulfosalicylic acid (SSA) has six potential donor sites in the three substituent groups (the sulfonic acid, the carboxylic acid and the phenolic groups), and it gives mono-, di- and trianionic ligand species through deprotonation. The presence of numerous oxygen atoms in the substituent groups usually results in hydrogen-bonding associations, and the self-assembly process of crystallization often requires the incorporation of water molecules in the structures (Smith *et al.* 2007). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one piperidium cation cation, one 3-carboxyl-4-hydroxyl-benzenesulfonate anion and one water molecule (Fig. 1). The bond distances and angles in the cationic and anionic species are normal. An intramolecular O6—H6···O5 hydrogen bond is observed. The molecular packing (Fig. 2) is stabilized by intermolecular O—H···O, O—H···S and N—H···O hydrogen bonds (Table 1), These interactions generate a three-dimensional hydrogenbonded framework structure.

Experimental

2-Hydroxy-5-sulfobenzoic acid (2.18 g, 10 mmol), piperidine (0.85 g, 10 mmol) and H_2O (20 ml) were loaded into a 50 ml roundbottom flask, and heated to dissolve the solid. Crystals of the title compound were obtained by slow evaporation of deionic H_2O solution.

Refinement

The H atoms of the water molecule, and the N-bound H atom H atom were located in a difference Fourier map, and refined with the O—H and N—H distance restraints of 0.86 (1) and 0.90 (1) Å, respectively. All other H atoms were positioned geometrically [O—H = 0.82 Å (hydroxyl), C—H = 0.93 Å (aromatic) and 0.96 Å (methyl)] and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(carrier)$ for hydroxyl and methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The asymmetric unit of title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Part of the crystal packing of the title compound. O—H…O and N—H…O hydrogen bonds are shown as dashed lines.

Piperidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

 $F_{000} = 680$

 $D_{\rm x} = 1.447 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 2608 reflections

 $\lambda = 0.71073 \text{ \AA}$

 $\theta = 3.0-25.1^{\circ}$

 $\mu = 0.25 \text{ mm}^{-1}$

T = 294 (2) K

Stick, colourless

 $0.24 \times 0.20 \times 0.16 \text{ mm}$

Crystal data

C₅H₁₂N⁺·C₇H₅O₆S⁻·H₂O $M_r = 321.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.8895 (14) Å b = 13.202 (3) Å c = 16.255 (3) Å $\beta = 93.739$ (3)° V = 1475.3 (5) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2602 independent reflections
Radiation source: fine-focus sealed tube	1966 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.942, \ T_{\max} = 0.961$	$k = -15 \rightarrow 15$
7480 measured reflections	$l = -19 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 0.5098P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
2602 reflections	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0191 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.16322 (7)	0.89594 (4)	0.24082 (3)	0.03289 (18)
01	0.3120 (2)	0.93486 (13)	0.19039 (9)	0.0516 (4)
02	-0.0297 (2)	0.93311 (11)	0.21241 (10)	0.0483 (4)
O3	0.1658 (2)	0.78755 (11)	0.25065 (9)	0.0479 (4)
O4	0.1660 (2)	0.78250 (12)	0.55005 (9)	0.0464 (4)
H4	0.160 (4)	0.752 (2)	0.5956 (17)	0.070*
05	0.2197 (2)	0.91602 (11)	0.63192 (9)	0.0462 (4)
O6	0.2977 (2)	1.08950 (12)	0.56636 (10)	0.0487 (4)
Н6	0.279 (4)	1.044 (2)	0.6018 (17)	0.073*
N1	0.1423 (3)	0.86332 (17)	0.80518 (12)	0.0481 (5)
H1A	0.100 (3)	0.928 (2)	0.7936 (15)	0.058*
H1B	0.124 (4)	0.8238 (18)	0.7615 (16)	0.058*
C1	0.2116 (3)	0.95050 (14)	0.33929 (12)	0.0294 (4)
C2	0.1907 (3)	0.89450 (15)	0.40946 (12)	0.0296 (4)
H2	0.1565	0.8265	0.4050	0.036*
C3	0.2204 (3)	0.93869 (15)	0.48727 (12)	0.0310 (5)
C4	0.2711 (3)	1.04151 (15)	0.49318 (13)	0.0349 (5)
C5	0.2947 (3)	1.09718 (16)	0.42200 (14)	0.0387 (5)
Н5	0.3302	1.1651	0.4258	0.046*
C6	0.2656 (3)	1.05223 (15)	0.34626 (13)	0.0365 (5)
H6A	0.2819	1.0899	0.2989	0.044*
C7	0.2020 (3)	0.87879 (16)	0.56285 (13)	0.0345 (5)
C8	0.0182 (4)	0.81764 (19)	0.86596 (17)	0.0630 (8)
H8A	0.0510	0.7466	0.8732	0.076*
H8B	-0.1172	0.8221	0.8458	0.076*
C9	0.0467 (4)	0.8713 (2)	0.94665 (16)	0.0691 (8)
H9A	-0.0299	0.8381	0.9868	0.083*
H9B	0.0008	0.9405	0.9403	0.083*
C10	0.2573 (4)	0.8719 (2)	0.97778 (15)	0.0629 (7)
H10A	0.2722	0.9105	1.0286	0.075*
H10B	0.3002	0.8031	0.9895	0.075*
C11	0.3795 (4)	0.9178 (2)	0.91490 (17)	0.0648 (8)
H11A	0.3461	0.9888	0.9081	0.078*

supplementary materials

H11B	0.5154	0.9136	0.9343	0.078*
C12	0.3510 (4)	0.8657 (3)	0.83399 (17)	0.0726 (9)
H12A	0.4242	0.9008	0.7937	0.087*
H12B	0.4002	0.7970	0.8390	0.087*
O7	0.6418 (2)	0.81286 (11)	0.18899 (10)	0.0456 (4)
H7A	0.7460 (19)	0.8483 (15)	0.1972 (16)	0.068*
H7B	0.5375 (18)	0.8480 (15)	0.1880 (17)	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0357 (3)	0.0317 (3)	0.0308 (3)	0.0030 (2)	-0.0010 (2)	0.0020 (2)
01	0.0537 (10)	0.0640 (11)	0.0382 (9)	-0.0077 (8)	0.0121 (7)	0.0017 (8)
02	0.0434 (9)	0.0428 (9)	0.0561 (10)	0.0062 (7)	-0.0162 (7)	-0.0029 (7)
03	0.0720 (11)	0.0301 (8)	0.0405 (9)	0.0082 (7)	-0.0032 (8)	-0.0010 (7)
04	0.0677 (11)	0.0385 (9)	0.0334 (9)	-0.0039 (8)	0.0054 (8)	0.0020 (7)
05	0.0549 (10)	0.0521 (10)	0.0317 (9)	-0.0034 (8)	0.0037 (7)	-0.0078 (7)
06	0.0595 (10)	0.0418 (10)	0.0445 (10)	-0.0072 (8)	0.0004 (8)	-0.0151 (7)
N1	0.0664 (14)	0.0453 (12)	0.0314 (10)	0.0145 (10)	-0.0064 (9)	-0.0087 (9)
C1	0.0253 (10)	0.0302 (11)	0.0327 (11)	0.0025 (8)	0.0022 (8)	-0.0003 (8)
C2	0.0268 (10)	0.0274 (10)	0.0347 (11)	0.0009 (8)	0.0017 (8)	-0.0035 (9)
C3	0.0243 (10)	0.0347 (11)	0.0340 (11)	0.0017 (8)	0.0014 (8)	-0.0026 (9)
C4	0.0263 (10)	0.0359 (12)	0.0422 (13)	0.0010 (9)	-0.0001 (9)	-0.0102 (10)
C5	0.0363 (12)	0.0291 (11)	0.0507 (14)	-0.0026 (9)	0.0032 (10)	-0.0027 (10)
C6	0.0332 (11)	0.0333 (12)	0.0430 (13)	0.0007 (9)	0.0034 (9)	0.0043 (10)
C7	0.0276 (11)	0.0398 (13)	0.0361 (12)	0.0019 (9)	0.0030 (9)	-0.0046 (10)
C8	0.0621 (17)	0.0474 (15)	0.0756 (19)	-0.0215 (13)	-0.0251 (14)	0.0167 (13)
C9	0.0687 (19)	0.092 (2)	0.0485 (16)	-0.0086 (16)	0.0178 (14)	0.0167 (15)
C10	0.082 (2)	0.0681 (18)	0.0357 (14)	-0.0133 (15)	-0.0139 (13)	0.0039 (12)
C11	0.0533 (16)	0.0748 (19)	0.0635 (18)	-0.0191 (14)	-0.0169 (13)	0.0147 (14)
C12	0.0524 (17)	0.107 (2)	0.0592 (18)	0.0259 (16)	0.0114 (13)	0.0104 (16)
07	0.0447 (9)	0.0437 (9)	0.0486 (10)	-0.0015 (7)	0.0040 (8)	-0.0046 (7)

Geometric parameters (Å, °)

S1—O3	1.4398 (15)	C5—C6	1.370 (3)
S1—O1	1.4478 (16)	С5—Н5	0.9300
S1—O2	1.4628 (15)	С6—Н6А	0.9300
S1—C1	1.767 (2)	C8—C9	1.492 (4)
O4—C7	1.309 (3)	C8—H8A	0.9700
O4—H4	0.85 (3)	C8—H8B	0.9700
O5—C7	1.224 (2)	C9—C10	1.505 (4)
O6—C4	1.350 (2)	С9—Н9А	0.9700
O6—H6	0.84 (3)	С9—Н9В	0.9700
N1—C8	1.477 (3)	C10-C11	1.494 (4)
N1—C12	1.483 (3)	C10—H10A	0.9700
N1—H1A	0.92 (3)	C10—H10B	0.9700
N1—H1B	0.88 (3)	C11—C12	1.485 (4)
C1—C2	1.375 (3)	C11—H11A	0.9700

C1—C6	1.396 (3)	C11—H11B	0.9700
C2—C3	1.396 (3)	C12—H12A	0.9700
С2—Н2	0.9300	C12—H12B	0.9700
C3—C4	1.403 (3)	O7—H7A	0.859 (9)
C3—C7	1.473 (3)	07—Н7В	0.855 (9)
C4—C5	1.389 (3)		
03—81—01	114.30 (10)	O5—C7—C3	122.69 (19)
O3—S1—O2	111.89 (9)	O4—C7—C3	114.48 (18)
O1—S1—O2	111.36 (10)	N1—C8—C9	110.2 (2)
O3—S1—C1	107.72 (9)	N1—C8—H8A	109.6
01—S1—C1	105.64 (9)	С9—С8—Н8А	109.6
O2—S1—C1	105.25 (9)	N1—C8—H8B	109.6
C7—O4—H4	109.9 (19)	С9—С8—Н8В	109.6
С4—О6—Н6	105 (2)	H8A—C8—H8B	108.1
C8—N1—C12	112.9 (2)	C8—C9—C10	111.5 (2)
C8—N1—H1A	109.1 (15)	С8—С9—Н9А	109.3
C12—N1—H1A	109.4 (16)	С10—С9—Н9А	109.3
C8—N1—H1B	103.9 (16)	С8—С9—Н9В	109.3
C12—N1—H1B	110.4 (16)	C10—C9—H9B	109.3
H1A - N1 - H1B	111 (2)	H9A_C9_H9B	108.0
$C_{2}-C_{1}-C_{6}$	119 45 (18)	C11 - C10 - C9	110.2(2)
$C_2 = C_1 = S_1$	120 57 (15)	C11—C10—H10A	109.6
C_{6}	119.95 (15)	C9-C10-H10A	109.6
C1 - C2 - C3	120.67 (18)	C_{11} C_{10} H_{10B}	109.6
C1 - C2 - H2	110.7	C_{P} C_{10} H_{10B}	109.6
$C_1 - C_2 - H_2$	119.7		109.0
$C_2 = C_2 = C_4$	119.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1
$C_2 = C_3 = C_4$	119.10 (10)	$C_{12} = C_{11} = C_{10}$	111.7(2)
$C_2 = C_3 = C_7$	121.03(18)		109.3
C4 - C3 - C7	119.78 (18)	CIO-CII-HIIA	109.3
06	117.99 (18)	CI2—CII—HIIB	109.3
06-04-03	122.22 (19)	CIO-CII-HIIB	109.3
C5-C4-C3	119.79 (19)	HIIA—CII—HIIB	107.9
C6—C5—C4	120.09 (19)	NI-CI2-CI1	111.0 (2)
С6—С5—Н5	120.0	N1—C12—H12A	109.4
C4—C5—H5	120.0	C11—C12—H12A	109.4
C5—C6—C1	120.8 (2)	N1—C12—H12B	109.4
С5—С6—Н6А	119.6	C11—C12—H12B	109.4
С1—С6—Н6А	119.6	H12A—C12—H12B	108.0
O5—C7—O4	122.83 (19)	H7A—O7—H7B	113.6 (15)
O3—S1—C1—C2	-17.95 (18)	C3—C4—C5—C6	1.0 (3)
01—S1—C1—C2	-140.49 (16)	C4—C5—C6—C1	0.2 (3)
O2—S1—C1—C2	101.57 (16)	C2—C1—C6—C5	-1.1 (3)
O3—S1—C1—C6	164.09 (15)	S1—C1—C6—C5	176.88 (15)
O1—S1—C1—C6	41.55 (18)	C2—C3—C7—O5	-177.13 (18)
O2—S1—C1—C6	-76.39 (17)	C4—C3—C7—O5	3.7 (3)
C6—C1—C2—C3	0.9 (3)	C2—C3—C7—O4	3.2 (3)
S1—C1—C2—C3	-177.12 (14)	C4—C3—C7—O4	-175.97 (18)
C1—C2—C3—C4	0.3 (3)	C12—N1—C8—C9	55.3 (3)

supplementary materials

C1—C2—C3—C7	-178.85 (17)	N1—C8—C9—C10	-55.7 (3)
C2—C3—C4—O6	178.52 (17)	C8—C9—C10—C11	56.0 (3)
C7—C3—C4—O6	-2.3 (3)	C9—C10—C11—C12	-55.3 (3)
C2—C3—C4—C5	-1.2 (3)	C8—N1—C12—C11	-54.9 (3)
C7—C3—C4—C5	177.93 (17)	C10-C11-C12-N1	54.5 (3)
O6—C4—C5—C6	-178.76 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7B…O1	0.855 (9)	1.933 (10)	2.786 (2)	176 (2)
O7—H7A···O2 ⁱ	0.859 (9)	1.912 (10)	2.770 (2)	177 (2)
N1—H1B…O5	0.88 (3)	2.55 (2)	2.983 (3)	110.6 (18)
N1—H1B···O7 ⁱⁱ	0.88 (3)	2.16 (3)	2.996 (3)	157 (2)
N1—H1A····O2 ⁱⁱⁱ	0.92 (3)	1.90 (3)	2.807 (3)	170 (2)
O6—H6…O5	0.84 (3)	1.82 (3)	2.597 (2)	153 (3)
O4—H4···O7 ⁱⁱ	0.85 (3)	1.75 (3)	2.601 (2)	179 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1/2, -*y*+3/2, *z*+1/2; (iii) -*x*, -*y*+2, -*z*+1.

Fig. 1

